报告一:On the Differential Properties of the Generalized Helleseth-Ness APN function
报告时间:2024年10月19日(星期六)9:30-10:30
报告地点:科教楼B座1710室
报告人:夏永波 教授
工作单位:中南民族大学
报告简介:
Let $p$ be an odd prime with $p \equiv 3 \pmod 4$, $n$ be an odd integer, $d_1=\frac{p^n-1}{2}-1$ and $d_2=p^n-2$. Then the function defined by $f_u(x)=ux^{d_1}+x^{d_2}$ is called the generalized Ness-Helleseth function over $\mathbb{F}_{p^n}$, where $u\in\mathbb{F}_{p^n}$. It was initially studied by Ness and Helleseth in the ternary case. In this talk, we will show the necessary and sufficient condition for $f_u(x)$ to be APN. This settles the open problem raised by Ness and Helleseth in 2007. In addition, the differential properties of $f_u(x)$ are further investigated. Especially, for some $u\in \mathbb{F}_{p^n}$, the differential spectrum of $f_u(x)$ is determined.
报告人简介:
夏永波,男,中南民族大学数统九州体育(JiuZhou Sports)官方网站教授,副院长,硕士生导师。2009年6月毕业于湖北大学数学系,获理学博士学位;2013年9月至2014年9月,受留学基金委资助,赴挪威卑尔根大学访学,合作导师为IEEE Fellow、挪威科九州体育(JiuZhou Sports)官方网站院士Tor Helleseth教授。研究兴趣为:无线通信中的序列设计、编码和密码学。
主持国家自然科学基金项目3项(面上2项,青年1项),湖北省自然科学基金2项,科技部外专项目2项;在《IEEE Transactions on Information Theory》、《Finite Fields and Their Applications》、《Cryptography and Communications》、《Science China Mathematics》等期刊上发表论文30余篇。曾获2018年湖北省自然科学奖二等奖、2019年国家民委教学成果二等奖、2018年和2022年湖北省教学成果奖三等奖,2019年入选国家民委青年教学标兵,2020年入选国家民委中青年英才。
报告二:Constructions of cyclic codes and extended primitive cyclic codes with their applications
报告时间:2024年10月19日(星期六)10:30-11:30
报告地点:科教楼B座1710室
报告人:衡子灵 教授
工作单位:长安大学
报告简介:
Linear codes with a few weights have many nice applications including combinatorial designs, distributed storage systems, secret sharing schemes and so on. In this paper, we construct two families of linear codes with a few weights based on special polynomials over finite fields. The first family of linear codes are extended primitive cyclic codes which are affine-invariant. The second family of linear codes are reducible cyclic codes. The parameters of these codes and their duals are determined. As the first application, we prove that these two families of linear codes hold t-designs, where t = 2, 3. As the second application, the minimum localities of the codes are also determined and optimal locally recoverable codes are derived.
报告人简介:
衡子灵,长安大学教授。2017年博士毕业于南京航空航天大学基础数学专业,师从岳勤教授;2017年7月-2018年7月在香港科技大学从事博士后研究工作,合作导师为丁存生教授;2018年7月至今在长安大学工作。主要研究代数编码理论,论文发表在《Journal of Algebra》、《IEEE Transactions On Information Theory》、《Designs, Codes and Cryptography》、《Finite Fields and Their Applications》等期刊上。主持两项国家级科研项目和多项省级项目。入选陕西省特支计划青年拔尖人才。