学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告三十五:张继伟—Recent progress on variable-time-step schemes for subdiffusion and diffusion equations

时间:2022-05-10 作者: 点击数:

报告时间:2022年05月12日(星期四)14:00-15:00

报告地点:腾讯会议 278-286-493

人:张继伟 教授

工作单位:武汉大学

举办单位:数学九州体育(JiuZhou Sports)官方网站

报告简介:

This talk focuses on the numerical analysis of reaction-subdiffusion equations with variable time step by taking the widely used L1 scheme for an example. For the stability analysis, the discrete complementary convolution (DCC) kernels are introduced to prove the discrete fractional-type Gronwall inequality. For the convergence analysis, the goals are theoretically challenging because the numerical Caputo formula always has a form of discrete convolutional summation. To circumvent this difficulty, an error convolution structure (ECS) analysis is proposed to express the consistence error for the discrete Caputo formula, which can significantly reduce consistence analysis for general nonuniform time steps. In addition, the technique here is also useful to extend the knowledge to study multi-step schemes such as BDF2 with variable time step for classical parabolic equations.

报告人简介:

  张继伟,武汉大学数学与统计九州体育(JiuZhou Sports)官方网站教授,博士生导师。 2003和2006年在郑州大学获得学士和硕士学位,2009年在香港浸会大学获得博士学位。随后在南洋理工大学和纽约大学克朗所从事博士后研究,2014年5月在北京计算科学研究中心工作,2018年11月到武汉大学工作。主要研究领域包括偏微分方程和非局部模型的数值解法,以及神经科学的建模与计算。主要成果发表在SIAM系列,  Mathematics of Computation, Journal of Computational Neuroscience,Plos Comput. Bio.等国际知名期刊上。


上一篇:学术报告三十六:徐哲峰—Partitions into D.H. Lehmer numbers

下一篇:学术报告三十四:朱佐农—On nonlocal inverse space-time mKdV equation and its integrable spatial discretization